Complete characterization of functions satisfying the conditions of Arrow's theorem
نویسندگان
چکیده
Arrow’s theorem implies that a social welfare function satisfying Transitivity, the Weak Pareto Principle (Unanimity) and Independence of Irrelevant Alternatives (IIA) must be dictatorial. When non-strict preferences are also allowed, a dictatorial social welfare function is defined as a function for which there exists a single voter whose strict preferences are followed. This definition allows for many different dictatorial functions, since non-strict preferences of the dictator are not necessarily followed. In particular, we construct examples of dictatorial functions which do not satisfy Transitivity and IIA. Thus Arrow’s theorem, in the case of nonstrict preferences, does not provide a complete characterization of all social welfare functions satisfying Transitivity, the Weak Pareto Principle, and IIA. The main results of this article provide such a characterization for Arrow’s theorem, as well as for follow up results by Wilson. In particular, we strengthen Arrow’s and Wilson’s result by giving an exact if and only if condition for a function to satisfy Transitivity and IIA (and the Weak Pareto Principle). Additionally, we derive formulae for the number of functions satisfying these conditions.
منابع مشابه
Arrow's Impossibility Theorem Without Unanimity
Arrow’s Impossibility Theorem states that any constitution which satisfies Transitivity, Independence of Irrelevant Alternatives (IIA) and Unanimity is a dictatorship. Wilson derived properties of constitutions satisfying Transitivity and IIA for unrestricted domains where ties are allowed. In this paper we consider the case where only strict preferences are allowed. In this case we derive a ne...
متن کاملGeneralized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کامل$C$-class Functions and Common Fixed Point Theorems Satisfying $varphi $-weakly Contractive Conditions
In this paper, we discuss and extend some recent common fixed point results established by using $varphi-$weakly contractive mappings. A very important step in the development of the fixed point theory was given by A.H. Ansari by the introduction of a $C-$class function. Using $C-$class functions, we generalize some known fixed point results. This type of functions is a very important class of ...
متن کاملIntradimensional Single-Peakedness and the Multidimensional Arrow Problem
Arrow's account (1951/1963) of the problem of social choice is based upon the assumption that the preferences of each individual in the relevant group are expressible by a single ordering. This paper lifts that assumption and develops a multidimensional generalization of Arrow's framework. I show that, like Arrow's original framework, the multidimensional generalization is affected by an imposs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Social Choice and Welfare
دوره 39 شماره
صفحات -
تاریخ انتشار 2012